Of Moss and Men

Geoffrey Donovan¹, Sarah Jovan¹, Demetrios Gatziolis¹, Igor Burstyn², Yvonne L. Michael², Michael C. Amacher³, Vicente Monleon¹

¹U.S. Forest Service, PNW Research Station, Portland, OR.

²Drexel University, Dornsife School of Public Health, Philadelphia, PA.

³U.S. Forest Service, Logan Forestry Sciences Lab, Logan, UT.

What is a moss?

Definition: taxonomic division *Bryopsida* small, non vascular plants

Vascular plant leaf in cross-section

Fig. 5. SEM micrographs of moss leaflets before (a) and after exposure (b,c) in the green (b) and roadside (c) site pair nr. 9 of Fig. 1, and enlargement of particulate matter (d,e) and pollen grain (f). Bar = 10 µm (a-d, f); 3 µm (e).

Berg and Steinnes 1997: Env Poll 98: 61-71

Why use bioindicators?

Expense per site

Air Q active instruments: ~\$100K-150K (annually)

Moss: ~\$150

Orthotrichum lyellii

U.S. distribution: AK, CA, ID, OR, WA

Cadmium (Cd):

- Lung cancer
- Prostate cancer
- Kidney disease
- Learning difficulties in children
- For more info, see ATSDR Cas ID# 7440-43-9

Spatial modeling

- Built a spatial linear model of Ln(Cd) in moss using an exponential covariance structure
 - Backwards, step-wise model selection
 - Models estimated using restricted maximum likelihood (SAS 9.4 MIXED)

 Used final model to estimate Cd on a 50m grid across the city

Covariates

- Tree genus
- Weather (precipitation, temperature)
- Density of roads (IDW, 500m buffer)
- Tree canopy cover (IDW, 500m buffer)
- Distance to permitted Cd emitters
- Distances to 2 unpermitted glass factories
- Distance to Washington border
- Percent industrial land (500m)
- Percent residential land (500m)

- Informed DEQ of findings
- DEQ monitored air near the facility in Oct 2015
- Oct 2015, We sampled 25 additional sites in the area with the help of a PSU Urban Ecology class

Area of concern

Cleveland HS

Winterhaven K-8

- Neither facility was out of compliance with the law....
 - Both glass facilities voluntarily stopped using Cd,
 As, Cr
 - Air concentrations dropped precipitously

- Found a regulatory loophole "the size of a lunar crater."
 - Glass facilities with "intermittent" furnaces not required to filter particulates (EPA exemption).
 - Baghouses (used by glass facilities with Cd permits) filter out ~99% of particulates

Resolution?

- DEQ and EPA closing the loophole
 - investigating other 'exempt' glass factories
- Gov. Brown's 'Cleaner Air Oregon'
 - 2.5mil increase for DEQ
 - DEQ to develop and enforce health risk-based regs for all industries
 - DEQ to employ moss monitoring
- Wyden/Merkeley funding request
 - 38mil for EPA, expand toxics monitoring (inc. moss monitoring)
 - 18.6mil for the Agency for Toxic Substances and Disease Registry (ATSDR)

Next steps:

- Metals GTR
 - To publish data on the remaining 21 elements we measured.
- Reciprocal transplant study with PSU
 - To help us learn what timeframe metals in the moss represents
- CALIBRATION!
 - Pairing moss data with DEQ particulate monitors to determine accuracy of the moss
- Cincinnati, summer 2017
 - Map metals and compare with neuroimaging data from the Cincinnati Children's Hospital